# Properties

 Label 1.343.abl Base Field $\F_{7^{3}}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{7^{3}}$ Dimension: $1$ L-polynomial: $1 - 37 x + 343 x^{2}$ Frobenius angles: $\pm0.0148899108188$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 1

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 307 116967 40341028 13841056011 4747557270817 1628413520361264 558545862667984687 191581231354799710323 65712362363066359755724 22539340290683783013161007

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 307 116967 40341028 13841056011 4747557270817 1628413520361264 558545862667984687 191581231354799710323 65712362363066359755724 22539340290683783013161007

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
All geometric endomorphisms are defined over $\F_{7^{3}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 1.343.bl $2$ (not in LMFDB) 1.343.r $3$ (not in LMFDB) 1.343.u $3$ (not in LMFDB)
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.343.bl $2$ (not in LMFDB) 1.343.r $3$ (not in LMFDB) 1.343.u $3$ (not in LMFDB) 1.343.au $6$ (not in LMFDB) 1.343.ar $6$ (not in LMFDB)