Properties

Label 1.343.abk
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 - 36 x + 343 x^{2}$
Frobenius angles:  $\pm0.0756263964363$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-19}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 308 117040 40343996 13841150400 4747559881988 1628413586227120 558545864221073036 191581231389534201600 65712362363809858842068 22539340290699102970145200

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 308 117040 40343996 13841150400 4747559881988 1628413586227120 558545864221073036 191581231389534201600 65712362363809858842068 22539340290699102970145200

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{7^{3}}$.

SubfieldPrimitive Model
$\F_{7}$1.7.d

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.bk$2$(not in LMFDB)