Properties

Label 1.343.abb
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 - 27 x + 343 x^{2}$
Frobenius angles:  $\pm0.240017271105$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-643}) \)
Galois group:  $C_2$
Jacobians:  3

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 3 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 317 117607 40361708 13841520651 4747565034767 1628413613007664 558545863281894497 191581231353750553203 65712362363085128489444 22539340290689328833701807

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 317 117607 40361708 13841520651 4747565034767 1628413613007664 558545863281894497 191581231353750553203 65712362363085128489444 22539340290689328833701807

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-643}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.bb$2$(not in LMFDB)