Properties

Label 1.337.aj
Base Field $\F_{337}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{337}$
Dimension:  $1$
L-polynomial:  $1 - 9 x + 337 x^{2}$
Frobenius angles:  $\pm0.421169149543$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1267}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 329 114163 38281124 12897793251 4346594344169 1464803628687616 493638822067677881 166356282579812099523 56062067225553335726948 18892916655130891495288243

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 329 114163 38281124 12897793251 4346594344169 1464803628687616 493638822067677881 166356282579812099523 56062067225553335726948 18892916655130891495288243

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{337}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1267}) \).
All geometric endomorphisms are defined over $\F_{337}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.337.j$2$(not in LMFDB)