Properties

Label 1.32.i
Base Field $\F_{2^{5}}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{5}}$
Dimension:  $1$
L-polynomial:  $1 + 8 x + 32 x^{2}$
Frobenius angles:  $\pm0.750000000000$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-1}) \)
Galois group:  $C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 41 1025 32513 1050625 33546241 1073741825 34360000513 1099509530625 35184380477441 1125899906842625

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 41 1025 32513 1050625 33546241 1073741825 34360000513 1099509530625 35184380477441 1125899906842625

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{5}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1}) \).
Endomorphism algebra over $\overline{\F}_{2^{5}}$
The base change of $A$ to $\F_{2^{20}}$ is the simple isogeny class 1.1048576.dau and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.
All geometric endomorphisms are defined over $\F_{2^{20}}$.
Remainder of endomorphism lattice by field

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{5}}$.

SubfieldPrimitive Model
$\F_{2}$1.2.ac

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.32.ai$2$1.1024.a
1.32.a$8$(not in LMFDB)