Properties

Label 1.317.abe
Base Field $\F_{317}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{317}$
Dimension:  $1$
L-polynomial:  $1 - 30 x + 317 x^{2}$
Frobenius angles:  $\pm0.181092477695$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-23}) \)
Galois group:  $C_2$
Jacobians:  12

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 12 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 288 100224 31856544 10098169344 3201081823008 1014741914599296 321673168230374304 101970394092484761600 32324614926148492554528 10246902931628981247521664

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 288 100224 31856544 10098169344 3201081823008 1014741914599296 321673168230374304 101970394092484761600 32324614926148492554528 10246902931628981247521664

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{317}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-23}) \).
All geometric endomorphisms are defined over $\F_{317}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.317.be$2$(not in LMFDB)