Properties

Label 1.317.a
Base Field $\F_{317}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{317}$
Dimension:  $1$
L-polynomial:  $1 + 317 x^{2}$
Frobenius angles:  $\pm0.5$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-317}) \)
Galois group:  $C_2$
Jacobians:  10

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 10 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 318 101124 31855014 10097838144 3201078401358 1014741916940196 321673167473963574 101970394069050374400 32324614926291125487198 10246902931640688936244164

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 318 101124 31855014 10097838144 3201078401358 1014741916940196 321673167473963574 101970394069050374400 32324614926291125487198 10246902931640688936244164

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{317}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-317}) \).
Endomorphism algebra over $\overline{\F}_{317}$
The base change of $A$ to $\F_{317^{2}}$ is the simple isogeny class 1.100489.yk and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $317$ and $\infty$.
All geometric endomorphisms are defined over $\F_{317^{2}}$.

Base change

This is a primitive isogeny class.

Twists

This isogeny class has no twists.