Properties

Label 1.313.al
Base Field $\F_{313}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{313}$
Dimension:  $1$
L-polynomial:  $1 - 11 x + 313 x^{2}$
Frobenius angles:  $\pm0.399376812565$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1131}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 303 98475 30673296 9597865875 3004147046463 940299090868800 294313622456789511 92120163572691427875 28833611193237646600848 9024920303508437707084875

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 303 98475 30673296 9597865875 3004147046463 940299090868800 294313622456789511 92120163572691427875 28833611193237646600848 9024920303508437707084875

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{313}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1131}) \).
All geometric endomorphisms are defined over $\F_{313}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.313.l$2$(not in LMFDB)