Properties

Label 1.313.abi
Base Field $\F_{313}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{313}$
Dimension:  $1$
L-polynomial:  $1 - 34 x + 313 x^{2}$
Frobenius angles:  $\pm0.0893092936804$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-6}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 280 97440 30656920 9597840000 3004149933400 940299117397920 294313622003553880 92120163568964160000 28833611193613987501720 9024920303520117460279200

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 280 97440 30656920 9597840000 3004149933400 940299117397920 294313622003553880 92120163568964160000 28833611193613987501720 9024920303520117460279200

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{313}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \).
All geometric endomorphisms are defined over $\F_{313}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.313.bi$2$(not in LMFDB)