Properties

Label 1.307.o
Base Field $\F_{307}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{307}$
Dimension:  $1$
L-polynomial:  $1 + 14 x + 307 x^{2}$
Frobenius angles:  $\pm0.630820103639$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-258}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 322 94668 28924294 8882887776 2727045241522 837201946566636 257021011192840342 78905450535217772928 24223973308751392050658 7436759805834126011893068

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 322 94668 28924294 8882887776 2727045241522 837201946566636 257021011192840342 78905450535217772928 24223973308751392050658 7436759805834126011893068

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{307}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-258}) \).
All geometric endomorphisms are defined over $\F_{307}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.307.ao$2$(not in LMFDB)