Properties

Label 1.307.f
Base Field $\F_{307}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{307}$
Dimension:  $1$
L-polynomial:  $1 + 5 x + 307 x^{2}$
Frobenius angles:  $\pm0.545572794128$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1203}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 313 94839 28929964 8882715579 2727044485783 837202029518736 257021010603709189 78905450510309649075 24223973309214980158228 7436759805837973244107239

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 313 94839 28929964 8882715579 2727044485783 837202029518736 257021010603709189 78905450510309649075 24223973309214980158228 7436759805837973244107239

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{307}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1203}) \).
All geometric endomorphisms are defined over $\F_{307}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.307.af$2$(not in LMFDB)