Properties

Label 1.283.aq
Base Field $\F_{283}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{283}$
Dimension:  $1$
L-polynomial:  $1 - 16 x + 283 x^{2}$
Frobenius angles:  $\pm0.342248843844$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-219}) \)
Galois group:  $C_2$
Jacobians:  16

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 16 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 268 80400 22674676 6414312000 1815230501788 513710657053200 145380128348497156 41142576400775328000 11643349119159936913708 3295067800663993822842000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 268 80400 22674676 6414312000 1815230501788 513710657053200 145380128348497156 41142576400775328000 11643349119159936913708 3295067800663993822842000

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{283}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-219}) \).
All geometric endomorphisms are defined over $\F_{283}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.283.q$2$(not in LMFDB)