Properties

Label 1.283.abg
Base Field $\F_{283}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{283}$
Dimension:  $1$
L-polynomial:  $1 - 32 x + 283 x^{2}$
Frobenius angles:  $\pm0.0999538826982$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 252 79632 22659588 6414198336 1815232159692 513710715715344 145380129041430612 41142576402422546688 11643349119156107835804 3295067800666748940972432

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 252 79632 22659588 6414198336 1815232159692 513710715715344 145380129041430612 41142576402422546688 11643349119156107835804 3295067800666748940972432

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{283}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
All geometric endomorphisms are defined over $\F_{283}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.283.bg$2$(not in LMFDB)
1.283.h$3$(not in LMFDB)
1.283.z$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.283.bg$2$(not in LMFDB)
1.283.h$3$(not in LMFDB)
1.283.z$3$(not in LMFDB)
1.283.az$6$(not in LMFDB)
1.283.ah$6$(not in LMFDB)