Properties

Label 1.269.i
Base Field $\F_{269}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{269}$
Dimension:  $1$
L-polynomial:  $1 + 8 x + 269 x^{2}$
Frobenius angles:  $\pm0.578421717647$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-253}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 278 72836 19459166 5236034368 1408516990918 378890471980964 101921535363758542 27416893186660877568 7375144266251460841334 1983913807582570643831876

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 278 72836 19459166 5236034368 1408516990918 378890471980964 101921535363758542 27416893186660877568 7375144266251460841334 1983913807582570643831876

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{269}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-253}) \).
All geometric endomorphisms are defined over $\F_{269}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.269.ai$2$(not in LMFDB)