Properties

Label 1.263.q
Base Field $\F_{263}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{263}$
Dimension:  $1$
L-polynomial:  $1 + 16 x + 263 x^{2}$
Frobenius angles:  $\pm0.664209929850$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-199}) \)
Galois group:  $C_2$
Jacobians:  18

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 18 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 280 69440 18182920 4784416000 1258285393400 330928707609920 87034259926843880 22890010295827584000 6020072706257482837720 1583279121787517944059200

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 280 69440 18182920 4784416000 1258285393400 330928707609920 87034259926843880 22890010295827584000 6020072706257482837720 1583279121787517944059200

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{263}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-199}) \).
All geometric endomorphisms are defined over $\F_{263}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.263.aq$2$(not in LMFDB)