Properties

Label 1.263.o
Base Field $\F_{263}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{263}$
Dimension:  $1$
L-polynomial:  $1 + 14 x + 263 x^{2}$
Frobenius angles:  $\pm0.642064377376$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-214}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 278 69500 18183146 4784380000 1258285968838 330928711413500 87034259649565786 22890010299243120000 6020072706293162610998 1583279121785810533197500

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 278 69500 18183146 4784380000 1258285968838 330928711413500 87034259649565786 22890010299243120000 6020072706293162610998 1583279121785810533197500

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{263}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-214}) \).
All geometric endomorphisms are defined over $\F_{263}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.263.ao$2$(not in LMFDB)