Properties

Label 1.263.b
Base Field $\F_{263}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{263}$
Dimension:  $1$
L-polynomial:  $1 + x + 263 x^{2}$
Frobenius angles:  $\pm0.509815469682$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1051}) \)
Galois group:  $C_2$
Jacobians:  5

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 5 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 265 69695 18190660 4784213275 1258284542075 330928779715760 87034259533478165 22890010281261995475 6020072706454802148460 1583279121788829314021975

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 265 69695 18190660 4784213275 1258284542075 330928779715760 87034259533478165 22890010281261995475 6020072706454802148460 1583279121788829314021975

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{263}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1051}) \).
All geometric endomorphisms are defined over $\F_{263}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.263.ab$2$(not in LMFDB)