Properties

Label 1.263.az
Base Field $\F_{263}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{263}$
Dimension:  $1$
L-polynomial:  $1 - 25 x + 263 x^{2}$
Frobenius angles:  $\pm0.219865247104$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-427}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 239 69071 18195548 4784479099 1258286332669 330928763526704 87034259587636243 22890010283587955475 6020072706257453073524 1583279121784389256866311

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 239 69071 18195548 4784479099 1258286332669 330928763526704 87034259587636243 22890010283587955475 6020072706257453073524 1583279121784389256866311

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{263}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-427}) \).
All geometric endomorphisms are defined over $\F_{263}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.263.z$2$(not in LMFDB)