Properties

Label 1.251.b
Base Field $\F_{251}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{251}$
Dimension:  $1$
L-polynomial:  $1 + x + 251 x^{2}$
Frobenius angles:  $\pm0.510047439303$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1003}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 253 63503 15812500 3969001003 996250940003 250058938250000 62764785594626753 15753961204127754003 3954244264200626687500 992515310307403751877503

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 253 63503 15812500 3969001003 996250940003 250058938250000 62764785594626753 15753961204127754003 3954244264200626687500 992515310307403751877503

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{251}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1003}) \).
All geometric endomorphisms are defined over $\F_{251}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.251.ab$2$(not in LMFDB)