Properties

Label 1.25.f
Base Field $\F_{5^2}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^2}$
Dimension:  $1$
Weil polynomial:  $1 + 5 x + 25 x^{2}$
Frobenius angles:  $\pm0.666666666667$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 31 651 15376 391251 9768751 244109376 6103593751 152588281251 3814693359376 95367441406251

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 31 651 15376 391251 9768751 244109376 6103593751 152588281251 3814693359376 95367441406251

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.