Properties

Label 1.25.ak
Base Field $\F_{5^2}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^2}$
Dimension:  $1$
Weil polynomial:  $( 1 - 5 x )^{2}$
Frobenius angles:  $0.0$, $0.0$
Angle rank:  $0$ (numerical)
Number field:  \(\Q\)
Galois group:  Trivial

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 16 576 15376 389376 9759376 244109376 6103359376 152587109376 3814693359376 95367412109376

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 16 576 15376 389376 9759376 244109376 6103359376 152587109376 3814693359376 95367412109376

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.