Properties

Label 1.25.ah
Base Field $\F_{5^{2}}$
Dimension $1$
Ordinary No
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $1$
Weil polynomial:  $1 - 7 x + 25 x^{2}$
Frobenius angles:  $\pm0.253183311107$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-51}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 19 627 15808 391875 9769819 244138752 6103397683 152587111875 3814694762944 95367433590627

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 19 627 15808 391875 9769819 244138752 6103397683 152587111875 3814694762944 95367433590627

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-51}) \).
All geometric endomorphisms are defined over $\F_{5^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.25.h$2$1.625.b