Properties

Label 1.25.ag
Base Field $\F_{5^{2}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $1$
L-polynomial:  $1 - 6 x + 25 x^{2}$
Frobenius angles:  $\pm0.295167235301$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 20 640 15860 391680 9766100 244117120 6103362740 152587560960 3814699109780 95367450947200

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 20 640 15860 391680 9766100 244117120 6103362740 152587560960 3814699109780 95367450947200

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1}) \).
All geometric endomorphisms are defined over $\F_{5^{2}}$.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{5^{2}}$.

SubfieldPrimitive Model
$\F_{5}$1.5.ae
$\F_{5}$1.5.e

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.25.g$2$1.625.o
1.25.ai$4$(not in LMFDB)
1.25.i$4$(not in LMFDB)