Properties

Label 1.25.af
Base Field $\F_{5^{2}}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $1$
Weil polynomial:  $1 - 5 x + 25 x^{2}$
Frobenius angles:  $\pm0.333333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 21 651 15876 391251 9762501 244109376 6103437501 152588281251 3814701171876 95367441406251

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 21 651 15876 391251 9762501 244109376 6103437501 152588281251 3814701171876 95367441406251

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
Endomorphism algebra over $\overline{\F}_{5^{2}}$
The base change of $A$ to $\F_{5^{6}}$ is the simple isogeny class 1.15625.jq and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $5$ and $\infty$.
All geometric endomorphisms are defined over $\F_{5^{6}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.25.f$2$1.625.z
1.25.k$3$(not in LMFDB)
1.25.ak$6$(not in LMFDB)