Properties

Label 1.241.ak
Base Field $\F_{241}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{241}$
Dimension:  $1$
L-polynomial:  $1 - 10 x + 241 x^{2}$
Frobenius angles:  $\pm0.395618560457$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-6}) \)
Galois group:  $C_2$
Jacobians:  24

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 24 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 232 58464 14003752 3373372800 812988218152 195930583327584 47219273514443752 11379844844422387200 2742542606073478151272 660952768066871675006304

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 232 58464 14003752 3373372800 812988218152 195930583327584 47219273514443752 11379844844422387200 2742542606073478151272 660952768066871675006304

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{241}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \).
All geometric endomorphisms are defined over $\F_{241}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.241.k$2$(not in LMFDB)