Properties

Label 1.241.ag
Base Field $\F_{241}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{241}$
Dimension:  $1$
L-polynomial:  $1 - 6 x + 241 x^{2}$
Frobenius angles:  $\pm0.438098135175$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-58}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 236 58528 14001644 3373319808 812988527276 195930605149600 47219273614148396 11379844838459939328 2742542605990230530924 660952768067888376423328

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 236 58528 14001644 3373319808 812988527276 195930605149600 47219273614148396 11379844838459939328 2742542605990230530924 660952768067888376423328

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{241}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-58}) \).
All geometric endomorphisms are defined over $\F_{241}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.241.g$2$(not in LMFDB)