# Properties

 Label 1.227.o Base Field $\F_{227}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{227}$ Dimension: $1$ L-polynomial: $1 + 14 x + 227 x^{2}$ Frobenius angles: $\pm0.653804147840$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-178})$$ Galois group: $C_2$ Jacobians: 8

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 242 51788 11690294 2655274336 602740020322 136821727998956 31058537494952902 7050287996257004928 1600415374172406212498 363294289954254372837068

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 242 51788 11690294 2655274336 602740020322 136821727998956 31058537494952902 7050287996257004928 1600415374172406212498 363294289954254372837068

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{227}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-178})$$.
All geometric endomorphisms are defined over $\F_{227}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.227.ao $2$ (not in LMFDB)