Properties

 Label 1.227.ax Base Field $\F_{227}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

Learn more about

Invariants

 Base field: $\F_{227}$ Dimension: $1$ L-polynomial: $1 - 23 x + 227 x^{2}$ Frobenius angles: $\pm0.223586803611$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-379})$$ Galois group: $C_2$ Jacobians: 3

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 3 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 205 51455 11700580 2655335275 602740437275 136821761881040 31058537339324945 7050287988095627475 1600415374167232632220 363294289953221254615775

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 205 51455 11700580 2655335275 602740437275 136821761881040 31058537339324945 7050287988095627475 1600415374167232632220 363294289953221254615775

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{227}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-379})$$.
All geometric endomorphisms are defined over $\F_{227}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.227.x $2$ (not in LMFDB)