Invariants
Base field: | $\F_{223}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 12 x + 223 x^{2}$ |
Frobenius angles: | $\pm0.631611723184$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-187}) \) |
Galois group: | $C_2$ |
Jacobians: | $8$ |
Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $236$ | $50032$ | $11083268$ | $2472981696$ | $551474383196$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $236$ | $50032$ | $11083268$ | $2472981696$ | $551474383196$ | $122978478736624$ | $27424204582115444$ | $6115597644769198848$ | $1363778273655323663564$ | $304122555033556156648432$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+138 x+191$
- $y^2=x^3+99 x+99$
- $y^2=x^3+156 x+22$
- $y^2=x^3+59 x+177$
- $y^2=x^3+219 x+211$
- $y^2=x^3+61 x+61$
- $y^2=x^3+127 x+127$
- $y^2=x^3+148 x+221$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{223}$.
Endomorphism algebra over $\F_{223}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-187}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.223.am | $2$ | (not in LMFDB) |