Invariants
Base field: | $\F_{223}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 19 x + 223 x^{2}$ |
Frobenius angles: | $\pm0.280518908343$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-59}) \) |
Galois group: | $C_2$ |
Jacobians: | $9$ |
Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $205$ | $49815$ | $11095420$ | $2473065675$ | $551473524775$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $205$ | $49815$ | $11095420$ | $2473065675$ | $551473524775$ | $122978484180720$ | $27424204334144305$ | $6115597636330401075$ | $1363778273701496439220$ | $304122555035061211594575$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which 0 are hyperelliptic):
- $y^2=x^3+47 x+47$
- $y^2=x^3+221 x+217$
- $y^2=x^3+139 x+139$
- $y^2=x^3+210 x+184$
- $y^2=x^3+70 x+70$
- $y^2=x^3+56 x+168$
- $y^2=x^3+30 x+90$
- $y^2=x^3+204 x+204$
- $y^2=x^3+82 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{223}$.
Endomorphism algebra over $\F_{223}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-59}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.223.t | $2$ | (not in LMFDB) |