Properties

Label 1.199.p
Base Field $\F_{199}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{199}$
Dimension:  $1$
L-polynomial:  $1 + 15 x + 199 x^{2}$
Frobenius angles:  $\pm0.678431912427$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-571}) \)
Galois group:  $C_2$
Jacobians:  5

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 5 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 215 39775 7875020 1568288475 312079972325 62103825223600 12358664435895755 2459374192261768275 489415464077250677060 97393677360181318744375

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 215 39775 7875020 1568288475 312079972325 62103825223600 12358664435895755 2459374192261768275 489415464077250677060 97393677360181318744375

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{199}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-571}) \).
All geometric endomorphisms are defined over $\F_{199}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.199.ap$2$(not in LMFDB)