Properties

Label 1.199.abc
Base Field $\F_{199}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{199}$
Dimension:  $1$
L-polynomial:  $1 - 28 x + 199 x^{2}$
Frobenius angles:  $\pm0.0391815390403$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 172 39216 7875364 1568169408 312078688732 62103828944304 12358664134376788 2459374189818394368 489415464099310426636 97393677359486968096176

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 172 39216 7875364 1568169408 312078688732 62103828944304 12358664134376788 2459374189818394368 489415464099310426636 97393677359486968096176

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{199}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
All geometric endomorphisms are defined over $\F_{199}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.199.bc$2$(not in LMFDB)
1.199.l$3$(not in LMFDB)
1.199.r$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.199.bc$2$(not in LMFDB)
1.199.l$3$(not in LMFDB)
1.199.r$3$(not in LMFDB)
1.199.ar$6$(not in LMFDB)
1.199.al$6$(not in LMFDB)