Properties

Label 1.193.f
Base Field $\F_{193}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{193}$
Dimension:  $1$
L-polynomial:  $1 + 5 x + 193 x^{2}$
Frobenius angles:  $\pm0.557594871213$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-83}) \)
Galois group:  $C_2$
Jacobians:  9

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 199 37611 7186288 1387432179 267785997919 51682547254464 9974730135430063 1925122952577744675 371548729951849498864 71708904873152359054011

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 199 37611 7186288 1387432179 267785997919 51682547254464 9974730135430063 1925122952577744675 371548729951849498864 71708904873152359054011

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{193}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-83}) \).
All geometric endomorphisms are defined over $\F_{193}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.193.af$2$(not in LMFDB)