| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.17.ai |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 260, 4810, 83200, 1419050, 24136580, 410344490, 6975820800, 118588284490, 2015996087300]$ |
$10$ |
$[10, 260, 4810, 83200, 1419050, 24136580, 410344490, 6975820800, 118588284490, 2015996087300]$ |
$1$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.17.ah |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$11$ |
$[11, 275, 4928, 83875, 1422091, 24147200, 410368123, 6975799875, 118587672896, 2015991753875]$ |
$11$ |
$[11, 275, 4928, 83875, 1422091, 24147200, 410368123, 6975799875, 118587672896, 2015991753875]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.17.ag |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$12$ |
$[12, 288, 5004, 84096, 1421772, 24139296, 410316492, 6975595008, 118587278988, 2015993076768]$ |
$12$ |
$[12, 288, 5004, 84096, 1421772, 24139296, 410316492, 6975595008, 118587278988, 2015993076768]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.17.af |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$13$ |
$[13, 299, 5044, 84019, 1420133, 24130496, 410298629, 6975677475, 118588157428, 2015996664539]$ |
$13$ |
$[13, 299, 5044, 84019, 1420133, 24130496, 410298629, 6975677475, 118588157428, 2015996664539]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.17.ae |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$14$ |
$[14, 308, 5054, 83776, 1418494, 24127796, 410322766, 6975859968, 118588557038, 2015994879668]$ |
$14$ |
$[14, 308, 5054, 83776, 1418494, 24127796, 410322766, 6975859968, 118588557038, 2015994879668]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.17.ad |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$15$ |
$[15, 315, 5040, 83475, 1417575, 24131520, 410359335, 6975922275, 118588019760, 2015991528075]$ |
$15$ |
$[15, 315, 5040, 83475, 1417575, 24131520, 410359335, 6975922275, 118588019760, 2015991528075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.17.ac |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$16$ |
$[16, 320, 5008, 83200, 1417616, 24138560, 410378768, 6975820800, 118587321616, 2015991713600]$ |
$16$ |
$[16, 320, 5008, 83200, 1417616, 24138560, 410378768, 6975820800, 118587321616, 2015991713600]$ |
$4$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.17.ab |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$17$ |
$[17, 323, 4964, 83011, 1418497, 24144896, 410369137, 6975663363, 118587264548, 2015994887843]$ |
$17$ |
$[17, 323, 4964, 83011, 1418497, 24144896, 410369137, 6975663363, 118587264548, 2015994887843]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.17.a |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 17 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$18$ |
$[18, 324, 4914, 82944, 1419858, 24147396, 410338674, 6975590400, 118587876498, 2015996740164]$ |
$18$ |
$[18, 324, 4914, 82944, 1419858, 24147396, 410338674, 6975590400, 118587876498, 2015996740164]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-17}) \) |
$C_2$ |
simple |
| 1.17.b |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$19$ |
$[19, 323, 4864, 83011, 1421219, 24144896, 410308211, 6975663363, 118588488448, 2015994887843]$ |
$19$ |
$[19, 323, 4864, 83011, 1421219, 24144896, 410308211, 6975663363, 118588488448, 2015994887843]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.17.c |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$20$ |
$[20, 320, 4820, 83200, 1422100, 24138560, 410298580, 6975820800, 118588431380, 2015991713600]$ |
$20$ |
$[20, 320, 4820, 83200, 1422100, 24138560, 410298580, 6975820800, 118588431380, 2015991713600]$ |
$4$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.17.d |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$21$ |
$[21, 315, 4788, 83475, 1422141, 24131520, 410318013, 6975922275, 118587733236, 2015991528075]$ |
$21$ |
$[21, 315, 4788, 83475, 1422141, 24131520, 410318013, 6975922275, 118587733236, 2015991528075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.17.e |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$22$ |
$[22, 308, 4774, 83776, 1421222, 24127796, 410354582, 6975859968, 118587195958, 2015994879668]$ |
$22$ |
$[22, 308, 4774, 83776, 1421222, 24127796, 410354582, 6975859968, 118587195958, 2015994879668]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.17.f |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$23$ |
$[23, 299, 4784, 84019, 1419583, 24130496, 410378719, 6975677475, 118587595568, 2015996664539]$ |
$23$ |
$[23, 299, 4784, 84019, 1419583, 24130496, 410378719, 6975677475, 118587595568, 2015996664539]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.17.g |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$24$ |
$[24, 288, 4824, 84096, 1417944, 24139296, 410360856, 6975595008, 118588474008, 2015993076768]$ |
$24$ |
$[24, 288, 4824, 84096, 1417944, 24139296, 410360856, 6975595008, 118588474008, 2015993076768]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.17.h |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$25$ |
$[25, 275, 4900, 83875, 1417625, 24147200, 410309225, 6975799875, 118588080100, 2015991753875]$ |
$25$ |
$[25, 275, 4900, 83875, 1417625, 24147200, 410309225, 6975799875, 118588080100, 2015991753875]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.17.i |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 17 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$26$ |
$[26, 260, 5018, 83200, 1420666, 24136580, 410332858, 6975820800, 118587468506, 2015996087300]$ |
$26$ |
$[26, 260, 5018, 83200, 1420666, 24136580, 410332858, 6975820800, 118587468506, 2015996087300]$ |
$1$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |