Properties

Label 1.169.ay
Base Field $\F_{13^{2}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13^{2}}$
Dimension:  $1$
L-polynomial:  $1 - 24 x + 169 x^{2}$
Frobenius angles:  $\pm0.125665916378$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1}) \)
Galois group:  $C_2$
Jacobians:  3

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 3 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 146 28324 4825154 815731200 137858783186 23298092033764 3937376502334274 665416610814412800 112455406971395671826 19004963775071639757604

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 146 28324 4825154 815731200 137858783186 23298092033764 3937376502334274 665416610814412800 112455406971395671826 19004963775071639757604

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1}) \).
All geometric endomorphisms are defined over $\F_{13^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.169.y$2$(not in LMFDB)
1.169.ak$4$(not in LMFDB)
1.169.k$4$(not in LMFDB)