Properties

Label 1.169.as
Base Field $\F_{13^{2}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13^{2}}$
Dimension:  $1$
L-polynomial:  $1 - 18 x + 169 x^{2}$
Frobenius angles:  $\pm0.256594102998$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-22}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 152 28576 4830104 815787648 137858959832 23298083925664 3937376285067608 665416607574071808 112455406940000202776 19004963774937509270176

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 152 28576 4830104 815787648 137858959832 23298083925664 3937376285067608 665416607574071808 112455406940000202776 19004963774937509270176

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-22}) \).
All geometric endomorphisms are defined over $\F_{13^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.169.s$2$(not in LMFDB)