Properties

Label 1.169.aba
Base Field $\F_{13^{2}}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13^{2}}$
Dimension:  $1$
L-polynomial:  $( 1 - 13 x )^{2}$
Frobenius angles:  $0$, $0$
Angle rank:  $0$ (numerical)
Number field:  \(\Q\)
Galois group:  Trivial
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 144 28224 4822416 815673600 137857749264 23298075468864 3937376260202256 665416607551718400 112455406930748394384 19004963774605082455104

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 144 28224 4822416 815673600 137857749264 23298075468864 3937376260202256 665416607551718400 112455406930748394384 19004963774605082455104

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13^{2}}$
The endomorphism algebra of this simple isogeny class is the quaternion algebra over \(\Q\) ramified at $13$ and $\infty$.
All geometric endomorphisms are defined over $\F_{13^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.169.ba$2$(not in LMFDB)