Properties

Label 1.163.az
Base Field $\F_{163}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{163}$
Dimension:  $1$
L-polynomial:  $1 - 25 x + 163 x^{2}$
Frobenius angles:  $\pm0.0652307277549$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 139 26271 4327348 705875499 115063264669 18755366679504 3057125226189943 498311414414939475 81224760538723362124 13239635967124119157311

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 139 26271 4327348 705875499 115063264669 18755366679504 3057125226189943 498311414414939475 81224760538723362124 13239635967124119157311

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{163}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
All geometric endomorphisms are defined over $\F_{163}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.163.z$2$(not in LMFDB)
1.163.i$3$(not in LMFDB)
1.163.r$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.163.z$2$(not in LMFDB)
1.163.i$3$(not in LMFDB)
1.163.r$3$(not in LMFDB)
1.163.ar$6$(not in LMFDB)
1.163.ai$6$(not in LMFDB)