# Properties

 Label 1.16.e Base Field $\F_{2^{4}}$ Dimension $1$ Ordinary No $p$-rank $0$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2^{4}}$ Dimension: $1$ L-polynomial: $1 + 4 x + 16 x^{2}$ Frobenius angles: $\pm0.666666666667$ Angle rank: $0$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 2

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is supersingular. $p$-rank: $0$ Slopes: $[1/2, 1/2]$

## Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 21 273 3969 65793 1049601 16769025 268451841 4295032833 68718952449 1099512676353

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 21 273 3969 65793 1049601 16769025 268451841 4295032833 68718952449 1099512676353

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{4}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
Endomorphism algebra over $\overline{\F}_{2^{4}}$
 The base change of $A$ to $\F_{2^{12}}$ is the simple isogeny class 1.4096.aey and its endomorphism algebra is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
All geometric endomorphisms are defined over $\F_{2^{12}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 1.16.ae $2$ 1.256.q 1.16.ai $3$ (not in LMFDB) 1.16.ae $6$ (not in LMFDB)
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.16.ae $2$ 1.256.q 1.16.ai $3$ (not in LMFDB) 1.16.ae $6$ (not in LMFDB) 1.16.i $6$ (not in LMFDB) 1.16.a $12$ (not in LMFDB)