# Properties

 Label 1.16.ab Base Field $\F_{2^{4}}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2^{4}}$ Dimension: $1$ L-polynomial: $1 - x + 16 x^{2}$ Frobenius angles: $\pm0.460106912325$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-7})$$ Galois group: $C_2$ Jacobians: 5

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary. $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 5 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 16 288 4144 65088 1047376 16783200 268460656 4294896768 68719003024 1099512282528

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 16 288 4144 65088 1047376 16783200 268460656 4294896768 68719003024 1099512282528

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{4}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-7})$$.
All geometric endomorphisms are defined over $\F_{2^{4}}$.

## Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{4}}$.

 Subfield Primitive Model $\F_{2}$ 1.2.ab $\F_{2}$ 1.2.b

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.16.b $2$ 1.256.bf