Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 10 x + 149 x^{2}$ |
| Frobenius angles: | $\pm0.634337290613$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-31}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $160$ | $22400$ | $3304480$ | $492889600$ | $73440240800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $160$ | $22400$ | $3304480$ | $492889600$ | $73440240800$ | $10942521161600$ | $1630436446361120$ | $242935033707878400$ | $36197319872274017440$ | $5393400661994016560000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+77 x+5$
- $y^2=x^3+57 x+57$
- $y^2=x^3+36 x+36$
- $y^2=x^3+76 x+3$
- $y^2=x^3+111 x+73$
- $y^2=x^3+59 x+59$
- $y^2=x^3+99 x+49$
- $y^2=x^3+125 x+125$
- $y^2=x^3+7 x+14$
- $y^2=x^3+126 x+126$
- $y^2=x^3+28 x+28$
- $y^2=x^3+117 x+85$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-31}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.149.ak | $2$ | (not in LMFDB) |