Properties

Label 1.139.p
Base Field $\F_{139}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{139}$
Dimension:  $1$
L-polynomial:  $1 + 15 x + 139 x^{2}$
Frobenius angles:  $\pm0.719470630801$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-331}) \)
Galois group:  $C_2$
Jacobians:  3

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 3 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 155 19375 2682740 373336875 51888707525 7212546490000 1002544431344135 139353666674281875 19370159741739907820 2692452204281901109375

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 155 19375 2682740 373336875 51888707525 7212546490000 1002544431344135 139353666674281875 19370159741739907820 2692452204281901109375

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{139}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-331}) \).
All geometric endomorphisms are defined over $\F_{139}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.139.ap$2$(not in LMFDB)