Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 10 x + 131 x^{2}$ |
| Frobenius angles: | $\pm0.356093333383$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-106}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $122$ | $17324$ | $2251022$ | $294508000$ | $38579186602$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $122$ | $17324$ | $2251022$ | $294508000$ | $38579186602$ | $5053909055564$ | $662062620713182$ | $86730203992752000$ | $11361656659832854682$ | $1488377021716935778604$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+85 x+85$
- $y^2=x^3+129 x+127$
- $y^2=x^3+81 x+31$
- $y^2=x^3+91 x+91$
- $y^2=x^3+38 x+76$
- $y^2=x^3+51 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-106}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.131.k | $2$ | (not in LMFDB) |