Properties

Label 1.128.d
Base Field $\F_{2^{7}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{7}}$
Dimension:  $1$
L-polynomial:  $1 + 3 x + 128 x^{2}$
Frobenius angles:  $\pm0.542326955317$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-503}) \)
Galois group:  $C_2$
Jacobians:  21

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 21 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 132 16632 2096028 268407216 34359967092 4398049439784 562949915358732 72057593777244768 9223372042508835684 1180591620733816569432

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 132 16632 2096028 268407216 34359967092 4398049439784 562949915358732 72057593777244768 9223372042508835684 1180591620733816569432

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{7}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-503}) \).
All geometric endomorphisms are defined over $\F_{2^{7}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.128.ad$2$(not in LMFDB)