Properties

Label 1.128.af
Base Field $\F_{2^{7}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{7}}$
Dimension:  $1$
L-polynomial:  $1 - 5 x + 128 x^{2}$
Frobenius angles:  $\pm0.429077426677$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-487}) \)
Galois group:  $C_2$
Jacobians:  7

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 7 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 124 16616 2098948 268414864 34359405644 4398047483384 562950000871508 72057594150727200 9223372031345147164 1180591620675424854536

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 124 16616 2098948 268414864 34359405644 4398047483384 562950000871508 72057594150727200 9223372031345147164 1180591620675424854536

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{7}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-487}) \).
All geometric endomorphisms are defined over $\F_{2^{7}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.128.f$2$(not in LMFDB)