Properties

Label 1.113.ao
Base Field $\F_{113}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{113}$
Dimension:  $1$
L-polynomial:  $1 - 14 x + 113 x^{2}$
Frobenius angles:  $\pm0.271189304635$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 100 12800 1444900 163072000 18424470500 2081950630400 235260518920100 26584441648128000 3004041937342252900 339456739014979904000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 100 12800 1444900 163072000 18424470500 2081950630400 235260518920100 26584441648128000 3004041937342252900 339456739014979904000

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1}) \).
All geometric endomorphisms are defined over $\F_{113}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.113.o$2$(not in LMFDB)
1.113.aq$4$(not in LMFDB)
1.113.q$4$(not in LMFDB)