Learn more

The results below are complete, since the LMFDB contains all isogeny classes of elliptic curves over fields of cardinality less than 500 or 512, 625, 729, 1024

Refine search


Results (13 matches)

  displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
1.11.ag $1$ $\F_{11}$ $1 - 6 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-2}) \) $C_2$
1.11.af $1$ $\F_{11}$ $1 - 5 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-19}) \) $C_2$
1.11.ae $1$ $\F_{11}$ $1 - 4 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
1.11.ad $1$ $\F_{11}$ $1 - 3 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-35}) \) $C_2$
1.11.ac $1$ $\F_{11}$ $1 - 2 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-10}) \) $C_2$
1.11.ab $1$ $\F_{11}$ $1 - x + 11 x^{2}$ $1$ \(\Q(\sqrt{-43}) \) $C_2$
1.11.a $1$ $\F_{11}$ $1 + 11 x^{2}$ $0$ \(\Q(\sqrt{-11}) \) $C_2$
1.11.b $1$ $\F_{11}$ $1 + x + 11 x^{2}$ $1$ \(\Q(\sqrt{-43}) \) $C_2$
1.11.c $1$ $\F_{11}$ $1 + 2 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-10}) \) $C_2$
1.11.d $1$ $\F_{11}$ $1 + 3 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-35}) \) $C_2$
1.11.e $1$ $\F_{11}$ $1 + 4 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
1.11.f $1$ $\F_{11}$ $1 + 5 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-19}) \) $C_2$
1.11.g $1$ $\F_{11}$ $1 + 6 x + 11 x^{2}$ $1$ \(\Q(\sqrt{-2}) \) $C_2$
  displayed columns for results