Properties

Label 1.89.c
Base field $\F_{89}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $1$
L-polynomial:  $1 + 2 x + 89 x^{2}$
Frobenius angles:  $\pm0.533804287064$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-22}) \)
Galois group:  $C_2$
Jacobians:  $6$
Isomorphism classes:  6

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $92$ $8096$ $704444$ $62727808$ $5584135132$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $8096$ $704444$ $62727808$ $5584135132$ $496982424224$ $44231325893308$ $3936588722846208$ $350356404674394716$ $31181719935406537376$

Jacobians and polarizations

This isogeny class contains the Jacobians of 6 curves (of which all are hyperelliptic), and hence is principally polarizable:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-22}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.89.ac$2$(not in LMFDB)