Properties

Label 1.337.ad
Base field $\F_{337}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{337}$
Dimension:  $1$
L-polynomial:  $1 - 3 x + 337 x^{2}$
Frobenius angles:  $\pm0.473961804183$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1339}) \)
Galois group:  $C_2$
Jacobians:  $8$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $335$ $114235$ $38275760$ $12897702675$ $4346596627175$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $335$ $114235$ $38275760$ $12897702675$ $4346596627175$ $1464803689708480$ $493638821442435815$ $166356282549052671075$ $56062067225610006939440$ $18892916655143675351761675$

Jacobians and polarizations

This isogeny class contains the Jacobians of 8 curves (of which all are hyperelliptic), and hence is principally polarizable:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{337}$.

Endomorphism algebra over $\F_{337}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1339}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.337.d$2$(not in LMFDB)