Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 20 x + 127 x^{2}$ |
| Frobenius angles: | $\pm0.152539311644$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $108$ | $15984$ | $2048004$ | $260155584$ | $33038636508$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $108$ | $15984$ | $2048004$ | $260155584$ | $33038636508$ | $4195876867056$ | $532875905291124$ | $67675234641580800$ | $8594754750889682508$ | $1091533853068127860464$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+2 x+2$
- $y^2=x^3+99 x+99$
- $y^2=x^3+77 x+77$
- $y^2=x^3+54 x+54$
- $y^2=x^3+75 x+98$
- $y^2=x^3+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.